The Courier-Times

Great Baker River Power Plant
Nearing Completion

October 15, 1925

W.D. Shannon
Chief Engineer
"Lake Shannon"
Newly Created
7-Mile Lake

Washington’s newest hydro-electric project, the great Baker River plant, is rapidly nearing completion. It will ultimately become the largest hydro-electric power plant of the Puget Sound Power & Light Co.

In honor of William D. Shannon, the man who has had entire charge of construction, the lake formed by the dam thrown across the Baker river will be known as "Shannon Lake." The lake will be more than seven miles long and will contain sufficient water to cover 70,000 acres one foot deep, ample to supply the power plant with the necessary flow every day throughout the year. The surface area of the lake will be 1,760 acres and it will be 465 feet above sea level.

Baker River rises among the glaciers on the north slopes of Mount Baker and Mount Shuksan, in Whatcom county. Near the foot of these peaks a vast mountainous mass backs up the river to form beautiful Baker Lake, the elevation of which is 704 feet above sea level. From the lake the stream flows down mountain gorges and through a valley 15 miles to its confluence with the Skagit River, near Concrete. Just before reaching the Skagit the Baker River flows deep through a gorge, across which the power project dam has been built, 255 feet high and 188 feet thick at the base. It contains more than 250,000 cubic yards of concrete masonry.

Back of this gigantic dam will be Shannon Lake, the reservoir that will store the flood waters of the river which will develop eventually 80,000 horsepower for use throughout western and central Washington—wherever the Puget Sound Power & Light Company’s transmission lines extend.

The first installation of power units will consist of two 25,000 horsepower water wheels. These giant generators are now in place and almost ready for operation. The power house has been designed for future development of the project up to 50,000 horsepower.

The main pressure tunnel has been constructed through the solid face-stone of the canyon’s side and is 24 feet in diameter. The tunnel is approximately 1,000 feet long, starts with concrete and will carry the water from the reservoir to the power house.

A surge tank has been provided near the lower end of the tunnel. Gates and rock bars control the outlet of water at the upper end of the tunnel.

Stout steel pipes or pressure pipes connect the pressure tunnel with the power house and will deliver the water to the turbines.

The cost of this great undertaking with a 33,000 kilowatt substitution at Sedro-Woolley is exceeding $800,000.

Under the supervision of Mr. Shannon a world’s record is being made in the construction of this project. As far as known no other plant of equal power will have been constructed in so short a time or at a smaller outlay and this despite the fact that last winter proved one of the worst on record. Construction was started April 1, 1916.

Baker River power will go through the largest out-of-door sub-stations in the Pacific Northwest, at Beverly Park, near Everett and another at Sedro-Woolley. Transmission lines will lead to Bellingham from Sedro-Woolley and to Beverly Park from there to Seattle, crossing the Lake Washington Canal on steel towers 253 feet high.